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We study dispersion without diffusion via mechanical mixing, starting from the early ballistic regime where
the mean-square displacement(MSd) ksj−kjld2l~ t2 grows as the elapsed time squared, to the long-time,
decoherent, asymptotic regime, where, MSd grows linearly in time. We find in the early time regime, the
propagator has a fingerprint of local geometry. The quadratict2 term in the MSd may persist if a mechanical
parameter:, long-range velocity deviation, which characterizes the deviation of the long-range mean velocity
seen by each particle from the long-range mean velocity of the entire ensemble, is nonzero. The time depen-
dence of dispersion coefficient, even in absence of diffusion, shows a behavior similar to that found in
Telegraph equation for diffusion with drift.
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I. INTRODUCTION

The purpose of this paper is to explore aspects of me-
chanical mixing in hydrodynamic dispersion[1]. Hydrody-
namic dispersion, the spreading of molecules by combined
effect of convective flow and random diffusion, is an arche-
type of balance of coherent motion and stochastic diffusion
that brings out a host of phenomena, such as an amplification
of diffusion coefficient, even in low Reynolds’ number, non-
chaotic flow.

Taylor showed[1] that in Poiseuille flow in capillary
tubes, the mean-square displacementksj−kjld2l (wherej is
the displacement of a single particle andk…l denotes an
ensemble average over all the particles) grows, in the long-
time asymptotic regime, linearly in time,ksj−kjld2l~K`t.
He showed that the hydrodynamic dispersion coefficient,
K`~DPe2, with D being the molecular diffusion coefficient
and Pe=va/D is the Péclet number, withv a characteristic
velocity anda the tube radius. In capillaries, the decoherence
is provided by diffusion of molecules between different
streamlines. In absence of diffusion, the particles on slow
stream lines that are near the wall will always lag behind the
particles on the faster stream lines and the MSd will grow as
ksj−kjld2l~v2t2. Diffusion allows the slow moving particles
to hop onto the faster stream lines and vice versa, and even-
tually, in the asymptotic limit, the decoherent, linear in time
behavior for MSd sets in.

In porous media, there is another source of mixing, viz
mechanical mixing[2–6] due to the randomness in flow ve-
locities induced by geometrical randomness. Throughout this
paper, we consider only slow, steady, Stoke’s flow. The
asymptotic behavior of dispersion in porous media is pro-
vided by a balance of mechanical mixing and molecular dif-
fusion. Diffusion is purely stochastic, but mechanical mixing
with slow flow, which we considered here, arises from the
tortuous flow paths that are frozen in time in a stationary
regime. Different behaviors for mean-square displacement
ksj−kjld2l~Kstdt, such as Kstd /D~Pe, Pe2, Pe lnsPed ,
tb , bÞ1 as a function of Pe, time, etc., have been reported
in the literature. These dispersive regimes in porous media

have been studied theoretically[2,3,7–9], numerically
[10,11] and experimentally[5,6,12–16]. Pe lnsPed behavior
was explained by Saffman[2,3] and later by Baudetet al. [8]
in specific models.

In this paper we investigate mainly two aspects of me-
chanical mixing using a simple model:(i) how the local ge-
ometry leaves its fingerprint on dispersion and(ii ) the man-
ner in which the asymptotic regime sets in.

Regarding the signature of local geometry, we examine
how the local features affect the flow propagator, the prob-
ability distributionPsj ,td of displacementsj along the direc-
tion of macroscopic flow, at timet. One directly measures
the Fourier transform of the propagator using Nuclear Mag-
netic Resonance(NMR) experiments[5,6,12–16]. As pointed
out by these authors[6], the NMR propagator experiments
give information in micron length scales, a resolution that is
not afforded by other imaging techniques, such as MRI, im-
aging of flow velocities, X-ray tomography, or traditional
tracer injection methods. Hulin and his collaborators[6],
among others, have emphasized that while much attention
has been paid to spreading processes in the field scale dis-
persion, pore-scale features deserve more attention because
they are important in a host of problems in porous media,
such as fingering in chromatographic columns[17]. These
local features play an important role during transition to
asymptotic behavior. In Fig. 4 of Ref.[6] the authors identify
correctly the shape of the probability distributionPsj ,td for
early times with that of the local velocity distribution. More
importantly, they draw attention, in their Fig. 6, to a double
peaked distribution with a second “bump” that develops for
larger displacements, which are comparable to the bead size,
and reflects a correlation lengthL of the Lagrangian veloci-
ties of the fluid particles. Clearly, such features in a propa-
gator can be a useful probe of microgeometry.

Our investigation, while greatly influenced by the work of
Hulin’s group[5,6], is somewhat different in emphasis. First,
to study the effect of local geometry, we incorporate local
variation in velocities by giving the flow channels a nonuni-
form cross section. Second, we use only mechanical mixing
and develop an explicit formulation for the time-dependent
dispersion coefficientKstd.
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The second aspect of our study addresses the asymptotic
regime where the displacements evolve as a Taylorian-
Gaussian that moves with the mean velocity and whose sec-
ond moment increases linearly in time,ksj−kjld2l~K`t. We
give a general formulation of dispersion coefficient in terms
of a mechanical parameter:, long-range velocity deviation,
that characterizes the deviation of the long-range mean ve-
locity seen by each particle from the long-range mean veloc-
ity of the entire ensemble. Parameter: can be used to gauge
the importance of diffusion. For example, in a system with
dead-end pores,:Þ0 and the asymptotic regime does not set
in without the help of stochastic process of diffusion. This is
an obvious example where the mean velocities seen by dif-
ferent particles are not the same without diffusion.

There are two nonmechanical dispersion mechanisms me-
diated by diffusion[18,19]. In the absence of diffusion, par-
ticles in a given stream line do not move onto another. In a
capillary, without diffusion, there will be no dispersion as
each stream line would correspond to a given velocity. This
represents a nonmechanical dispersion mechanism, “bound-
ary layer” dispersion that arises due to the nonslip boundary
conditions on the solid-fluid interface. The boundary layer
dispersion is present in all porous media, even in absence of
dead ends, as it arises due to the nonslip boundary condition.
This is discussed more precisely by Koch and Brady[18,19].
Likewise, the fluid in a dead-end pore, will have no convec-
tive displacement, and the same statistics of displacement for
fluid inside and outside dead ends, can be achieved only via
diffusion. This is the so called “hold-up” mechanism[18,19].
In porous media the particles that are near a boundary with
nearly zero velocity may be able to experience a nonzero
velocity, even in the absence of diffusion, when it emerges
into an open area. When a path that is mostly fast(away
from grains) comes near a path mostly slow(near pore-
walls), the effect of diffusion over small distances will be of
paramount importance. The boundary effect is healed by dif-
fusion over distances that are much smaller than any other
characteristic size.

II. MECHANICAL MODEL FOR DISPERSION
WITHOUT DIFFUSION

In this paper we will consider systems without any dead
ends. We consider only the effect of velocity variation along
a streamline, but assume that all the different streamlines
have the same length. The model consists in a bundle of
tubes in the spirit of Saffman[2,3]. We differ from Saffman
in two important ways: first, we assume that the tubes have
nonuniform cross sections(trumpet shape); second, and
more importantly, we consider the entire time dependence
from the early to late period. Saffman considered only the
asymptotic limit, where the use of velocity correlation func-
tion (see below) applies. Here each tube is different from the
adjoining one—but follows the same statistical laws. Each
tube has a random length and a random average cross sec-
tion. Each trumpet shape crudely mimics the pore space
(pore and a throat): the void space in a pack of grains. To
simplify the calculations, the trumpets are given exponential
shape. We only pay attention to the movement along the axis

of the tubex, i.e., one-dimensional movement(transverse
motions are neglected), and we assume that the flow is in-
compressible. Like previous models[2,3,6], the velocity
along a streamline has discontinuities at the end of each pore
tube, even though we require that the flux of flow(velocity
times the cross section) remains continuous throughout.

The propagator ofPsj ,td, the probability density of dis-
placement in timet, is averaged over all initial position ac-
cording to their density

Psj,td ; E
sample

Psx0 + j,x0,tdrsx0ddx0. s1d

In this equation,Psx0+j ,x0,td is the probability density
of having a displacement equal toj in the timet, andrsx0d is
the density of particles at the initial positionx0. In this
model,rsx0d~asx0d the local cross section. Because we only
consider mechanical mixing,Psx0+j ,x0,td=d(j−Jsx0,td),
where Jsx0,td is the function that gives the distance tra-
versed by a particle, starting fromx0 during time t. Incom-
pressibility requires that the populationrsx0ddx0 at each slice
dx0 at initial positions x0 is preserved, suchrsx0ddx0

=rsxddx, x=x0+Jsx0,td. In other words,x0 goes tox after
time t and x0+dx0 becomesx+dx after the same time, in-
compressibility impliesrsx0ddx0=rsxddx. Jsx0,td is found
for each initial position either by inverting the integralt
=ex0

x0+Jsx0,tddx/vsxd or by adding incrementally(determinis-
tic) displacementsdJsx,dtd=vsxddt for a given numbern of
infinitesimal time stepsdt, with t=ndt, starting fromhx0,t
=0j. We generate the initial positions of particles using a
random number generator adhering to distribution of initial
position proportional torsx0d. After each deterministic time
step, we update the positions and the local velocities that are
preassigned via the shape of the trumpet. Next we present the
results of numerical simulations.

First, we assume a plug flow, i.e., the velocity depends
only on the projected position on the axis of the motion
vsx,rd=v0sxd~1/asxd. At very short mean displacements,
Fig. 1 the distribution of displacements is proportional to the
velocity distribution, which, in this case, resembles an expo-
nential profile, as seen in bead pack experiments[5,6]. This
is the ballistic regime. When the mean displacement in-
creases, this shape is deformed. The result forkjl,0.5kLl is
shown in Fig. 2. Here the characteristic sizekLl is the mean
size of the tubes(pores) in the distribution we have used in
our simulation. The shape ofPsj ,td for small j continues to
reflect the initial distribution of displacements(i.e., the dis-
tribution of velocity in the medium and) a second “bump”
develops.

As noted earlier, this second bump has been detected in
many NMR experiments of dispersion on bead packs at high
Péclet number and for a mean displacement smaller thankLl
[5,6]. For example, in Ref.[5], Psj ,td at kjl,0.3kLl looks
exactly like the one we present in Fig. 2. This is the signature
of the initial fast particles that have traveled to the next pore
[5,6]. When the particles get out of the throat(the narrow
part of the opening), they “fall” in a slow part(the wide part
of the opening) and accumulate there, which results in this
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second bump. This peak is the signature of a “short-range
correlation motion” consisting of a sequence of slow-fast-
slow, which most of the particle see with a coherent sched-
ule. As the flow is incompressible, there are more particles in
the slow part than in the fast part. Thus, the bump is due to
the variation of velocity along a streamline(and not due to
mixing between the different streamlines themselves).

To check that the variation of velocity along a streamline
alone gives the bump, we perform exactly the same simula-
tion as above, but we mimic a Poiseuille flow shape in each
tube,vsx,rd=v0sxdf1−pr2/asxdg , v0sxd~1/asxd. The propa-
gator simulated at the same mean displacement is shown in
Fig. 3. The propagator for Poiseuille flow without diffusion,
considered here, is treated as a superposition of one-
dimensional flows, one for each streamline corresponding to
a given radial position betweenr0 and r0+dr0. For each
streamline, the calculation goes as described above. The ra-
dial position of each streamline as it moves down is relo-
cated according tor0→ r8=r0Îasx8d /asx0d, asx0→x8. Note

that once the distribution of the shapes are chosen, the range
of integration forr0 is defined and factorf1−pr2/asxdg in
vsx,rd=v0sxdf1−pr2/asxdg remains invariant down the
stream.

Although limited, the Poiseuille flow model considered
here is useful in assessing the effects of “slow streamlines”
in velocity fluctuations from pore to pore. The model repre-
sents an extreme case of the effects of “boundary layer” dis-
persion[18,19] arising from the nonslip boundary conditions
on the solid-fluid interface. The short-range correlation peak
is more conspicuous with a plug flow than with a Poiseuille
flow. Indeed a Poiseuille flow assumption induces more
spread, since the velocity is forced to go to zero, asr
→Îasxd /p, at a given positionx. Together, these simulations
prove that it is really the coherent sequence slow-fast-slow
along each streamline plus the incompressible flow assump-
tion that are responsible for the short-range correlation peak.
For longer displacement, the second bump will grow further.
The peak at the zero displacement peak disappears in the
case of the plug flow, but will persist in the case of Poiseuille
flow.

Poiseuille flow without diffusion has an anomaly: the zero
velocity layers dictated by the boundary condition never dis-
appear and continue to fall back from the remaining group,
giving rise to ksj−kjld2l~ t2 or kjl2. In a real system, the
transverse molecular diffusion removes the persistence of
“zero velocity layer,” thus,ksj−kjld2l~ t2 or kjl2 should not
be observable in real systems. In other words, the fact that
Kskjld keeps increasing linearly at long distances in Fig. 4
for the Poiseuille model is due to the lack of transverse dif-
fusion and should not be present in a real system in the
asymptotic limit. Next, we turn our attention to this second
moment as the descriptor of the mechanical mixing.

The plot in Fig. 4 shows the evolution ofskj2l
−kjl2d / kjl with kjl / kLl. We find that the mean-square dis-
placementkj2l−kjl2 changes from the initial ballistic value

FIG. 1. Distribution of displacements in a plug flow when the
mean displacement is small reflects the local velocity distribution.

FIG. 2. Distribution of displacements whenkjl / kLl,1/2 with a
plug flow assumption.

FIG. 3. Distribution of displacements in a Poiseuille flow when
the mean displacement is approximatively equal to half the mean
size of a pore:kjl / kLl,1/2. One can distinctively see a second
bump aroundj=kLl.
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skv2l−kvl2dt2 to an asymptotic one, which varies ast2 or kjl2

for the Poiseuille flow case, and is linear int or in kjl for the
plug flow. We are able to fit the transition of the Poiseuille
curve quite well by exps−Îkjl / ld wherel is a length around
0.05kLl. By comparing to Fig. 3, one can see that the transi-
tion in kj2l−kjl2 occurs while the short-range correlation
peak is developing, which allows us to define it as a signa-
ture of this mechanical transition. Despite the similarities in
the short-range bump in the two propagators for Poiseuille
and plug flow, we find in Fig. 4 that the mean-square dis-
placement grows linearly in time orkjl for plug flow [i.e.,
Kstd] and eventually saturates to its asymptotic valueK`, in
contrast with the Poiseuille flow with no diffusion.

III. VELOCITY-VELOCITY CORRELATION FUNCTION

Next we examine the statistics of the second moment by
extending the velocity correlation function formalism. This
formalism was originally developed by Taylor[21] and used
by Saffman[3], but is often called the Kubo formula. We
extend the original formulation by allowing deviations in the
mean velocities. We assume that the measurement volume is
equal or larger than a representative elementary volume(or
REV)—a size on which the medium is homogeneous. In
NMR experiments, the signal comes from all the particles
enclosed in the pickup coil and we assume that the size of
sample seen by the pickup coil is much larger than REV. We
suppose that an asymptotic regime exists and that at this time
scale, the movement of each particle is decorrelated from the
others and follows a time-independent distribution of veloci-
ties. Thus, for each particlei, we define the probability law
pisvd, which describes the probability for the particlei to
have a velocity betweenv and v+dv. This is equivalent to

defining the distribution of velocities that each single particle
will encounter along its path across the medium. In the
asymptotic regime,kjl is larger than the characteristic size of
a REV. We assume that in the asymptotic limit, the distribu-
tion pisvd is stable (i.e., has reached a time-independent
steady state) for each particle. We now developfkj2l
−kjl2gstd, which we denote byWstd in this asymptotic re-
gime.

Let vi be the mean with respect to the distributionpisvd,
i.e., the mean of the velocities sampled by the particlei, in its
entire course, and, thus, is time independent. The instanta-
neous velocity is given by a sum ofvi, and a time-dependent
fluctuation termwistd :vistd=vi +wistd. Then, by assuming
that in the asymptotic regime the paths of each particle is
uncorrelated from the others, we find

Wstd = skvi
2l − kvil2dt2 + 2tE

0

`

kwis0dwistdldt. s2d

As before,k…l denotes an average with respect to all the
particles(i.e., all tubes and all streamlines). Let us emphasize
that the second term in Eq.(2) is a measure of the fluctua-
tions around the mean of each distribution of velocities. It
produces a term linear int in the asymptotic limit, and the
integral gives the hydrodynamic dispersion coefficientK`.
The linear term is the classical expression that goes back, as
noted above, to Taylor[21] and to Saffman[3]. Note that
these definitions are made from a Lagrangian point of view.
Indeed, Saffman[3] termed the velocity-velocity correlation
function the Lagrangian correlation function(see also Bear’s
book [20], Koch and Brady papers[7,18,19]). The first term
in (2) defines:, the long-range velocity deviation, which is
an asymptotic mechanical coefficient. Thus, the asymptotic
regime of a purely mechanical dispersion can be written

fkj2l − kjl2gstd = :t2 + Kt, s3d

where: is the long-range velocity deviation, which repre-
sents deviations in coherent motions. Our signal is averaged
over all initial positions within REV, it is, thus, impossible
for us to observe the transientt4 calculated by Latini and
Bernoff [23], which corresponds to motion of a small packet
of particles in a capillary; the initial dimension of the packet
being much smaller than the radius of the capillary. In our
calculations, such features of selected groups of particles at
small scales are averaged over.

Equation(3) suggests an ansatz for the complete range of
time for dispersion, with or without diffusion, in a general
porous medium

fkj2l − kjl2gstd . Rstdt2 + Fstdt. s4d

We call Rstd the remanence function of velocity deviation
andFstd the fluctuation function. In general,Rstd andFstd
will rapidly reach their limiting values, which, respectively,
are: andK`, in a purely mechanical approach. An exception
arises when disorder keeps increasing with the size of the
sample as in[24].

FIG. 4. Mechanical transition of dispersion with Poiseuille flow
and plug flow assumptions depicted by the evolution ofKskjl
;kvltd=skj2l−kjl2d / kjl. For Poiseuille flow,Kskjld changes slope
but remains linear inkjl. The inset shows that for the plug flow,
Kskjld saturates toK` in the asymptotic regime, whenkjl=kvlt
@ kLl.
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The initial behavior forkj2l−kjl2 is given by the ballistic
motion skv2l−kvl2dt2. This term is expected to decay as the
decoherence develops with time, eventually leaving only the
asymptoticK`t term in Eq.(3). The early ballistic regime has
been emphasized by several authors— starting with Taylor
himself [1,4]—and decoherence due to diffusion removes
that term. Here we would like to make the distinction that we
consider the eventual loss of this ballistic process by deco-
herence via mechanical mixing inabsenceof diffusion.

For the plug-flow simulation, shown in Fig. 4, we find
that the following equations,

Rstd = Skv2l − kvl2 − b
DvDL

t2
DexpS−Î t

t1
D ,

Fstd = bDvDLF1 − expS−
t

t2
DG s5d

fit the simulation results well. Heret2.30t1.3kTl (kTl is
the mean time required to cross a pore), the constantb
,0.1, and the fluctuationsDvDL, whereDA=ÎkA2l−kAl2,
are given by a random walk type estimation. Note that for
plug flow Fstd has short-timet2 behavior, which is a hall-
mark of persistence in random walks[21] as seen in the
Telegraph equation[9], and a long tail shown in the inset in
Fig. 4. For Poiseuille flow in our tandem of trumpets model,
the particles that are close to the walls of one trumpet remain
close to the walls of all the subsequent trumpets and, thus,
always remain slow in absence of diffusion.Rstd reaches a
nonzero constant limit at long times because of the total lack
of transverse molecular diffusion. In a complex porous me-
dium, as time goes by, more and more particles close to the
wall reach the end of the slow flow lines where they were
trapped and move thereafter on faster lines(see below), i.e.,
Rstd→0.

We repeat that the mixing considered in Eq.(5) is by
mechanical means alone. For a persistent random walk
model, assuming that the velocity-velocity correlation func-
tion [a term analogous to the second term in Eq.(2)] decays
exponentially in time, with a time constantt, Taylor [21]
found that MSd goes fromt2 to t in the long-time limit as

ksj − kjld2l = 2kv2lhtt − t2s1 − e−t/tdj s6d

Van den Broeck[4] gives a closed-form solution, similar to
Eq. (6) for particles that hop between two layers, each mov-
ing with different overall velocities. In Eq.(5), Fstd derives
this behavior from encountering random velocities in its flow
history. These flow velocities, which are strongly correlated
over a pore, and produce the bump in the propagator at early
times, eventually become random in moving from pore to
pore due to the geometrical randomness, which is intrinsic in
a porous medium.

An asymptotic regime is difficult to achieve even in well-
connected systems without dead ends. Tessieret al. [11]
show that a Gaussian limit is not obtained for the range of
their data set. Scheven and Sen[16] have measured a non-
vanishing third moment to show clearly that at early stages,
the distribution is not a Gaussian. Nevertheless, it is common
practice to extract an “effective” dispersion coefficientK

from the NMR data and plot it against the Péclet number to
study how its behaves. Here we find thatKstd has strong
dependence on time(or mean displacement) with character-
istic times or displacements reflecting the fluctuations in ve-
locity field, and, as such,Kstd does not have a simple depen-
dence on Pe. Diverse behaviors arise out of the different
pathways(depending on Pe, geometry, etc.) that lead to the
destruction of initial ballistic behavior and destruction of
Rstd. Below we consider, qualitatively, how diffusion affects
Rstd.

IV. ROLE OF DIFFUSION AND DEPENDENCE
OF K ON Pe

In a purely mechanical mixing case, limt→`Rstd=:. This
may or may not be zero in a real system. Diffusion eventu-
ally makesRstd→0. With diffusion, Fstd starts out being
zero att=0, then increases to reach asymptotically toK` the
hydrodynamic dispersion coefficient.

Maier et al. [10] find K`~DPe in random bead packs and
K`~DPe2 in periodic arrays. This example brings out most
vividly the role of balance between mechanical mixing and
diffusion and how this balance is reflected on dependence of
K` on Pe.

In random bead packs, because of tortuosity, a single—
deterministic—streamline will encounter a wide range of ve-
locities. Here even a very inefficient diffusion kills the zero-
velocity pathology localized at the wall by mixing the
streamlines on a scale(of a boundary layer[18,19]) that is
much smaller than a pore size. Subsequently, the tortuosity is
responsible for homogenizing the different pathways. One
thus finds an asymptotic linear regime, due only to mechani-
cal mixing. Then we expectK`,VL, i.e.,K` /D,Pe, which
implies thatK` doesnot depend on diffusion. The role of
diffusion is primarily to cut down the time of residence near
a wall, which gives rise to the well-known Pe lnsPed term[8]
of “hold-up” diffusion. However Pe lnsPed correction is
small in bead packs[10], i.e., they findK` /D,Pe.

In contrast, the flow in periodic arrays allows a free mo-
tion along the axis of the flow and nearly all the particles
collectively participate to create a nonzero value of:. To kill
the effect of this nonzero:, the diffusion length has to be of
the order of the scale of a pore to homogenize the pathways.
This case is much more like the original case of dispersion
through a capillary[1], and, consequently, it is normal to find
K` /D,Pe2.

For a pack of beads, which are porous themselves,:Þ0
due to isolation of some of the intrabead channels and not
just due to the immobile layers arising from the nonslip
boundary condition. Diffusion in and out of a bead is indis-
pensable, and our picture predictsK`~DPe2, which was ob-
served experimentally[22].

V. CONCLUSION

In conclusion, the dispersion propagatorPsj ,td in preas-
ymptotic regime has features(bumps) that reflect local ge-
ometry of porous media. The mechanical mixing alone, in
plug flow s:;0d, causes a transition from the ballistic re-
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gime to a stochastic one in a way that is strongly dependent
on the geometry: the dispersion coefficientKstd approaches a
time-independent asymptotic valueK` with characteristic
time constants that reflect fluctuations in local velocity or
geometry. In absence of dead ends, only the effects due to
the nonslip boundary condition will make:Þ0, but diffu-
sion over small distances can heal the dead layers. Combin-
ing model simulation and generalizing the velocity correla-
tion function formalism, we develop physically qualitative
explanations of the different regimes of dispersion that have
been predicted and measured in different geometries. Assum-
ing that the correction arising due to the nonslip boundary

condition is small(i.e., Pe lnsPed type terms are small, as
noted by Maieret al. in bead packs[10]), we have two main
dependencies forK` /D: if :→0 by diffusion, we expect
K` /D,Pe2 or if :;0 by mechanical mixing(tortuosity),
we expect,K` /D,Pe. Different Pe and time dependencies
arise from relative weights of diffusion versus mechanical
mixing that kill the: term.

Let us reiterate that all flow considered here is creeping,
slow, steady Stokes flow at low Reynolds number. Disper-
sion induced by turbulence(that was studied by Taylor as
early as 1953[25]) is outside the scope of this paper.
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