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We study dispersion without diffusion via mechanical mixing, starting from the early ballistic regime where
the mean-square displacemdMSd) ((£-(£))®«=t? grows as the elapsed time squared, to the long-time,
decoherent, asymptotic regime, where, MSd grows linearly in time. We find in the early time regime, the
propagator has a fingerprint of local geometry. The quadtéatierm in the MSd may persist if a mechanical
parametei, long-range velocity deviatigrwhich characterizes the deviation of the long-range mean velocity
seen by each particle from the long-range mean velocity of the entire ensemble, is nonzero. The time depen-
dence of dispersion coefficient, even in absence of diffusion, shows a behavior similar to that found in
Telegraph equation for diffusion with drift.
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I. INTRODUCTION have been studied theoretically2,3,7—9, numerically
: - 10,17 and experimentallyj5,6,12-16. Pe I(Pe behavior

The purpose of this paper is to explore aspects of me[ )
chanical mixing in hydrodynamic dispersiga]. Hydrody- was explained by Saffm@,3] and later by Baudest al. [8]

O . . . _In specific models.
hamic d'SDEfS'OU’ the spreading of mo_lecu_les _by combined In this paper we investigate mainly two aspects of me-
effect of convective flow and random diffusion, is an arche-

) =~ chanical mixing using a simple modél) how the local ge-
type Of balance of coherent motion and stochastic d'.ﬁ.us"?rbmetry Ieaves%ts fingerprintpon dispgr)sion aiigl the ngn-
that brings out a host of phenomena, such as an amplificati

o o . i Her in which the asymptotic regime sets in.
of d|ff_usmn coefficient, even in low Reynolds’ number, non- Regarding the signature of local geometry, we examine
chaotic flow. . o _ _ how the local features affect the flow propagator, the prob-
Taylor showed([1] that in Poiseuille flow in capillary apility distributionP(,t) of displacements along the direc-
tubes, the mean-square displacem@éit(£))>) (whereéis  tion of macroscopic flow, at timé. One directly measures
the displacement of a single particle afd.) denotes an the Fourier transform of the propagator using Nuclear Mag-
ensemble average over all the partiglgsows, in the long- netic Resonance\MR) experimentg5,6,12—16. As pointed
time asymptotic regime, linearly in timé(&—(&))%) xK_. out by these authorgs], the NMR propagator experiments
He showed that the hydrodynamic dispersion Coefﬁcientgive information in mi(}ron Iength SC{:lleS, a resolution that is
K..DP&, with D being the molecular diffusion coefficient Not afforded by other imaging techniques, such as MRI, im-
and Peza/D is the Péclet number, with a characteristic 29ing of flow velocities, X-ray tomography, or traditional

velocity anda the tube radius. In capillaries, the decoherencd'acer injehction hmethods. hHu!in dang hisht_:lollaborﬁtc@&];, .
is provided by diffusion of molecules between different @MONY others, have emphasized that while much attention

streamlines. In absence of diffusion, the particles on sIovxI/qas been paid to spreading processes in the field scale dis-

; . local features play an important role during transition to
to hop onto the faster stream lines and vice versa, and eveRsymptotic behavior. In Fig. 4 of RgB] the authors identify
tually, _in the asymptotiq limit, the decoherent, linear in time correctly the shape of the probability distributi®é,t) for
behavior for MSd sets in. early times with that of the local velocity distribution. More
In porous media, there is another source of mixing, vizimportantly, they draw attention, in their Fig. 6, to a double
mechanical mixing2—6] due to the randomness in flow ve- peaked distribution with a second “bump” that develops for
locities induced by geometrical randomness. Throughout thifarger displacements, which are comparable to the bead size,
paper, we consider only slow, steady, Stoke's flow. Theand reflects a correlation lengthof the Lagrangian veloci-
asymptotic behavior of dispersion in porous media is proties of the fluid particles. Clearly, such features in a propa-
vided by a balance of mechanical mixing and molecular dif-gator can be a useful probe of microgeometry.
fusion. Diffusion is purely stochastic, but mechanical mixing  Our investigation, while greatly influenced by the work of
with slow flow, which we considered here, arises from theHulin’s group[5,6], is somewhat different in emphasis. First,
tortuous flow paths that are frozen in time in a stationaryto study the effect of local geometry, we incorporate local
regime. Different behaviors for mean-square displacemenariation in velocities by giving the flow channels a nonuni-
((€-(9)?«K(tt, such as K(t)/D=Pe, P& Pel{Pe, form cross section. Second, we use only mechanical mixing
t?, B# 1 as a function of Pe, time, etc., have been reported@nd develop an explicit formulation for the time-dependent
in the literature. These dispersive regimes in porous medidispersion coefficienk(t).
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The second aspect of our study addresses the asymptoti€ the tubex, i.e., one-dimensional movemef(transverse
regime where the displacements evolve as a Taylorianmotions are neglectgdand we assume that the flow is in-
Gaussian that moves with the mean velocity and whose secompressible. Like previous mode[2,3,6, the velocity
ond moment increases linearly in timgé— (&)%)« K. t. We  along a streamline has discontinuities at the end of each pore
give a general formulation of dispersion coefficient in termstube, even though we require that the flux of flgvelocity
of a mechanical paramet&y, long-range velocity deviatign times the cross sectipmemains continuous throughout.
that characterizes the deviation of the long-range mean ve- The propagator oP(¢,t), the probability density of dis-
locity seen by each particle from the long-range mean velocplacement in time, is averaged over all initial position ac-
ity of the entire ensemble. Parameecan be used to gauge cording to their density
the importance of diffusion. For example, in a system with
dead-end porest # 0 and the asymptotic regime does not set _
in without the help of stochastic process of diffusion. This is P&D Lamp,eP(XOJr £20,Dp(x0) 0o, @
an obvious example where the mean velocities seen by dif- ) ) _ - )
ferent particles are not the same without diffusion. In this equationP(xo+£,Xo,t) is the probability density

There are two nonmechanical dispersion mechanisms mé&f having a displacement equal¢an the timet, andp(Xo) is
diated by diffusion[18,19. In the absence of diffusion, par- the density of particles at the initial positiox. In this
ticles in a given stream line do not move onto another. In @nodel, p(Xy) = a(xo) the local cross section. Because we only
capillary, without diffusion, there will be no dispersion as consider mechanical mixingP(xo+&,%,t) = 8(é—E(Xo,1)),
each stream line would correspond to a given velocity. Thisvhere Z(x,t) is the function that gives the distance tra-
represents a nonmechanical dispersion mechanism, “boundersed by a particle, starting fromy during timet. Incom-
ary layer” dispersion that arises due to the nonslip boundarpressibility requires that the populatipf,)dx, at each slice
conditions on the solid-fluid interface. The boundary layerdx, at initial positions x, is preserved, suchp(x)dx,
dispersion is present in all porous media, even in absence &fp(x)dx, x=x,+Z(Xo,t). In other wordsx, goes tox after
dead ends, as it arises due to the nonslip boundary conditiofime t and x,+dx, becomesx+dx after the same time, in-
This is discussed more precisely by Koch and BretB;19.  compressibility impliesp(xp)dx=p(x)dx. E(xo,t) is found
Likewise, the fluid in a dead-end pore, will have no convecor each initial position either by inverting the integral
;:vgﬁwpl&acemjnt, anctij tr&e sdamedstatlstlci of dlﬁ_placgmelnt fg_r fxxg+:(x°'t)dx/v(x) or by adding incrementallydeterminis-
e anc outide daa s an be schesed o Vi spacemerta=(v. o <0 (1t for a given rmben

In porous media the particles that are near a boundary withn'tes'méII time stepsit, with t=ndt, starting from{x, t

nearly zero velocity may be able to experience a nonzer50}. We generate the initial positions of particles using a

velocity, even in the absence of diffusion, when it ernergegandom number generator adhering to distribution of initial
into an open area. When a path that is mostly fastay position proportional tg(xy). After each deterministic time

from graing comes near a path mostly slomear pore- step, we update the positions and the local velocities that are
walls), the effect of diffusion over small distances will be of Preassigned via the shape of the trumpet. Next we present the
paramount importance. The boundary effect is healed by diff€Sults of numerical simulations.

fusion over distances that are much smaller than any other First, we assume a plug flow, i.e., the velocity depends
characteristic size. only on the projected position on the axis of the motion

v(X,r)=ve(x) x1/a(x). At very short mean displacements,
Fig. 1 the distribution of displacements is proportional to the
Il. MECHANICAL MODEL FOR DISPERSION velocity distribution, which, in this case, resembles an expo-
WITHOUT DIFFUSION nential profile, as seen in bead pack experim¢bi§]. This

In this paper we will consider systems without any dead® the ba”'_St'C regime. When the mean d|sp|aceme_nt in-
ends. We consider only the effect of velocity variation alongC'€2S€s: this shape is deformed. The resultdpr-0.5L) is
a streamline, but assume that all the different streamline§NOWn in Fig. 2. Here the characteristic sizg is the mean
have the same length. The model consists in a bundle dfize of the tubegpores in the distribution we have used in
tubes in the spirit of Saffmaf2,3]. We differ from Saffman  Our simulation. The shape &f(¢,t) for small ¢ continues to
in two important ways: first, we assume that the tubes havéeflect the initial distribution of displacementise., the dis-
nonuniform cross sectiongtrumpet shape second, and tribution of velocity in the medium anda second “bump”
more importantly, we consider the entire time dependencéevelops.
from the early to late period. Saffman considered only the As noted earlier, this second bump has been detected in
asymptotic limit, where the use of velocity correlation func- many NMR experiments of dispersion on bead packs at high
tion (see belowapplies. Here each tube is different from the P€clet number and for a mean displacement smaller(than
adjoining one—but follows the same statistical laws. EacH5,6]. For example, in Ref[5], P(¢,t) at (¢§)~0.3L) looks
tube has a random length and a random average cross sexxactly like the one we present in Fig. 2. This is the signature
tion. Each trumpet shape crudely mimics the pore spacef the initial fast particles that have traveled to the next pore
(pore and a throat the void space in a pack of grains. To [5,6]. When the particles get out of the thra@he narrow
simplify the calculations, the trumpets are given exponentiapart of the opening they “fall” in a slow part(the wide part
shape. We only pay attention to the movement along the axisf the opening and accumulate there, which results in this
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' Mean disp = 0.45<L>
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<L>/10
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FIG. 1. Distribution of displacements in a plug flow when the

mean displacement is small reflects the local velocity distribution. FIG. 3. Distribution of displacements in a Poiseuille flow when

the mean displacement is approximatively equal to half the mean
“short-rangéize of a pore(é)/{L)~1/2. One can distinctively see a second

second bump. This peak is the signature of a
t_bump aroundé=(L).

correlation motion” consisting of a sequence of slow-fas
slow, which most of the particle see with a coherent schedat once the distribution of the shapes are chosen, the range
ule. As the flow is incompressible, there are more particles iy integration forr, is defined and factofl-mr2/a(x)] in

the slow part than in the fast part. Thus, the bump is due t@,(x r)=y(x)[1-mr?/a(x)] remains invariant down the

the variation of velocity along a streamliiand not due to  gtream.

mixing between the different streamlines themselves Although limited, the Poiseuille flow model considered

To check that the variation of velocity along a streamlinenere is useful in assessing the effects of “slow streamlines”
alone gives the bump, we perform exactly the same simulain velocity fluctuations from pore to pore. The model repre-
tion as above, but we mimic a Poiseuille flow shape in eaclyents an extreme case of the effects of “boundary layer” dis-
tube,v(x,r)=vo(X)[1-mr?/a(x)], ve(x) = 1/a(x). The propa-  persion[18,19 arising from the nonslip boundary conditions
gator simulated at the same mean displacement is shown @h the solid-fluid interface. The short-range correlation peak
Fig. 3. The propagator for Poiseuille flow without diffusion, is more conspicuous with a plug flow than with a Poiseuille
considered here, is treated as a superposition of onétow. Indeed a Poiseuille flow assumption induces more
dimensional flows, one for each streamline corresponding t@pread, since the velocity is forced to go to zero,ras
a given radial position between, and ro+dro. For each  —, \[a(x)/, at a given positiox. Together, these simulations
streamline, the calculation goes as described above. The rgrove that it is really the coherent sequence slow-fast-slow
dial position of each streamline as it moves down is relo-gjong each streamline plus the incompressible flow assump-
cated according to,—r'=rg\a(x’)/a(X), asxo—X'. Note  tjon that are responsible for the short-range correlation peak.
For longer displacement, the second bump will grow further.
The peak at the zero displacement peak disappears in the
case of the plug flow, but will persist in the case of Poiseuille
flow.

Poiseuille flow without diffusion has an anomaly: the zero
velocity layers dictated by the boundary condition never dis-
appear and continue to fall back from the remaining group,
giving rise to{(é—(&)?)=t? or (¢)°. In a real system, the
transverse molecular diffusion removes the persistence of
“zero velocity layer,” thus{(&-(£))?) «t? or (¢£)? should not
be observable in real systems. In other words, the fact that
K((&) keeps increasing linearly at long distances in Fig. 4
for the Poiseuille model is due to the lack of transverse dif-
fusion and should not be present in a real system in the
asymptotic limit. Next, we turn our attention to this second
moment as the descriptor of the mechanical mixing.

The plot in Fig. 4 shows the evolution of(£%)

FIG. 2. Distribution of displacements wheg/(L)~1/2 witha  —(£)/(&) with (£&/(L). We find that the mean-square dis-
plug flow assumption. placement £%)—(£)? changes from the initial ballistic value

Probability density

Displacement
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1 g g g T g g defining the distribution of velocities that each single particle
R — P A will encounter along its path across the medium. In the
-&— Poiseuille | i asymptotic regime(é) is larger than the characteristic size of

: : ; ' a REV. We assume that in the asymptotic limit, the distribu-
tion p;(v) is stable(i.e., has reached a time-independent
steady state for each particle. We now develof(é?)
—(&?](t), which we denote byM(t) in this asymptotic re-
gime.

Let v; be the mean with respect to the distributipfw),

i.e., the mean of the velocities sampled by the particie its
entire course, and, thus, is time independent. The instanta-
neous velocity is given by a sum of, and a time-dependent
fluctuation termw;(t):v;(t)=v;+w;(t). Then, by assuming
that in the asymptotic regime the paths of each particle is
uncorrelated from the others, we find

K(<E>)

; 0 510 15 20 25 | :
1] 0.2 0.4 0.6 0.8 1 1.2 1.4 16
cfxfal =

W= (@ -G wowod @
FIG. 4. Mechanical transition of dispersion with Poiseuille flow 0
and plug flow assumptions depicted by the evolutionKdfé)

=)= —(6?)1(&). For Poiseuille flowK((£) changes slope . , ) .
but remains linear if¢). The inset shows that for the plug flow, particles(i.e., all tubes and all streamlines.et us emphasize

K((2)) saturates tK.. in the asymptotic regime, whef)=(v)t that the second term in E@) is a measure of the fluctua-
>(L). tions around the mean of each distribution of velocities. It

produces a term linear ihin the asymptotic limit, and the

. . . integral gives the hydrodynamic dispersion coeffici&nt
(<vz>_<v>2?t2 t(? an asymptotic ong, Wh'Ch .varllestﬁmr (&7 The linear term is the classical expression that goes back, as
for the Poiseuille flow case, and is lineartior in (¢) for the  [,5teq above, to Taylof21] and to Saffmar{3]. Note that
plug flow. We are able tO fit the transition of the POlseU“lethese definitions are made from a Lagrang|an p0|nt of view.
curve quite well by exp-(&)/1) wherel is a length around  |ndeed, Saffmari3] termed the velocity-velocity correlation
0.05L). By comparing to Fig. 3, one can see that the transifunction the Lagrangian correlation functi¢see also Bear’s
tion in (£2)—(&)? occurs while the short-range correlation book [20], Koch and Brady papei§,18,19). The first term
peak is developing, which allows us to define it as a signain (2) definesX, thelong-range velocity deviatigrwhich is
ture of this mechanical transition. Despite the similarities inan asymptotic mechanical coefficient. Thus, the asymptotic
the short-range bump in the two propagators for Poiseuilléegime of a purely mechanical dispersion can be written
and plug flow, we find in Fig. 4 that the mean-square dis-

As before...) denotes an average with respect to all the

placement grows linearly in time dg) for plug flow [i.e., [(£2) = (£)7](t) = N2 + Kt, (3)
K(t)] and eventually saturates to its asymptotic vatug in
contrast with the Poiseuille flow with no diffusion. whereX is the long-range velocity deviation, which repre-
sents deviations in coherent motions. Our signal is averaged
IIl. VELOCITY-VELOCITY CORRELATION EUNCTION over all initial positions within REYV, it is, thus, impossible

for us to observe the transietft calculated by Latini and

Next we examine the statistics of the second moment bernoff [23], which corresponds to motion of a small packet
extending the velocity correlation function formalism. This of particles in a capillary; the initial dimension of the packet
formalism was originally developed by Taylf#1] and used being much smaller than the radius of the capillary. In our
by Saffman[3], but is often called the Kubo formula. We calculations, such features of selected groups of particles at
extend the original formulation by allowing deviations in the small scales are averaged over.
mean velocities. We assume that the measurement volume is Equation(3) suggests an ansatz for the complete range of
equal or larger than a representative elementary vol(one time for dispersion, with or without diffusion, in a general
REV)—a size on which the medium is homogeneous. Inporous medium
NMR experiments, the signal comes from all the particles
enclosed in the pickup coil and we assume that the size of [(&) = (&2](H) = R(OL + F()t. (4)
sample seen by the pickup coil is much larger than REV. We
suppose that an asymptotic regime exists and that at this timdfe call R(t) the remanence function of velocity deviation
scale, the movement of each particle is decorrelated from thand F(t) the fluctuation functionIn general,R(t) and F(t)
others and follows a time-independent distribution of veloci-will rapidly reach their limiting values, which, respectively,
ties. Thus, for each particle we define the probability law areX andK., in a purely mechanical approach. An exception
pi(v), which describes the probability for the partidldo  arises when disorder keeps increasing with the size of the
have a velocity between andv+dv. This is equivalent to sample as irf24].
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The initial behavior for &%) —(£)? is given by the ballistic  from the NMR data and plot it against the Péclet number to
motion ((v?)—(v)?)t?. This term is expected to decay as the study how its behaves. Here we find th&tt) has strong
decoherence develops with time, eventually leaving only thelependence on timg@r mean displacementvith character-
asymptotidK..t term in Eq.(3). The early ballistic regime has istic times or displacements reflecting the fluctuations in ve-
been emphasized by several authors— starting with Tayloiocity field, and, as suctK(t) does not have a simple depen-
himself [1,4—and decoherence due to diffusion removesdence on Pe. Diverse behaviors arise out of the different
that term. Here we would like to make the distinction that wepathways(depending on Pe, geometry, étthat lead to the
consider the eventual loss of this ballistic process by decodestruction of initial ballistic behavior and destruction of
herence via mechanical mixing absenceof diffusion. R(t). Below we consider, qualitatively, how diffusion affects

For the plug-flow simulation, shown in Fig. 4, we find R(t).
that the following equations,

AvAL)exp( / t ) IV. ROLE OF DIFFUSION AND DEPENDENCE
2 1 ,

R(t) = <<v2> - ()-8 OF K ON Pe

In a purely mechanical mixing case, lim.R(t)=N. This
_ _ _t may or may not be zero in a real system. Diffusion eventu-
F) _'BAUAL[l EXF( Tz)} ®) ally makesR(t)— 0. With diffusion, F(t) starts out being
) ) ) ) zero att=0, then increases to reach asymptoticallKtothe
fit the simulation results well. Here,= 307, =3(T) ((T) is hydrodynamic dispersion coefficient

the mean time required to cross a porthe M Maier et al. [10] find K., DPe in random bead packs and
~0.1, and the fluctuationdvAL, where AA=\(A%)—(A)?,  K_=DP& in periodic arrays. This example brings out most
are given by a random walk type estimation. Note that forvividly the role of balance between mechanical mixing and
plug flow F(t) has short-timet? behavior, which is a hall-  diffusion and how this balance is reflected on dependence of
mark of persistence in random walk21] as seen in the K_ on Pe.
Telegraph equatioff], and a long tail shown in the inset in In random bead packs, because of tortuosity, a single—
Fig. 4. For Poiseuille flow in our tandem of trumpets model,deterministic—streamline will encounter a wide range of ve-
the particles that are close to the walls of one trumpet remaifocities. Here even a very inefficient diffusion kills the zero-
close to the walls of all the subsequent trumpets and, thuselocity pathology localized at the wall by mixing the
always remain slow in absence of diffusioR(t) reaches a streamlines on a scal@f a boundary layef18,19) that is
nonzero constant limit at long times because of the total lacknuch smaller than a pore size. Subsequently, the tortuosity is
of transverse molecular diffusion. In a complex porous meresponsible for homogenizing the different pathways. One
dium, as time goes by, more and more particles close to th#hus finds an asymptotic linear regime, due only to mechani-
wall reach the end of the slow flow lines where they werecal mixing. Then we exped{..~ VL, i.e.,K../D~Pe, which
trapped and move thereafter on faster ligg=e belowy, i.e., implies thatK, doesnot depend on diffusion. The role of
R(t)—0. diffusion is primarily to cut down the time of residence near
We repeat that the mixing considered in E§) is by  awall, which gives rise to the well-known Pe(lre) term|[8]
mechanical means alone. For a persistent random wal&f “hold-up” diffusion. However PelfPg correction is
model, assuming that the velocity-velocity correlation func-small in bead packgl0], i.e., they findK../D ~ Pe.
tion [a term analogous to the second term in &)] decays In contrast, the flow in periodic arrays allows a free mo-
exponentially in time, with a time constant Taylor [21] tion along the axis of the flow and nearly all the particles
found that MSd goes frort? to t in the long-time limit as collectively participate to create a nonzero valuelofo Kill
Z (N2 = 2 2N 4 _ the effect of this nonzers, the diffusion length has to be of

(€= ()% = 2t - A1 -} ©® the order of the scale of a pore to homogenize the pathways.
Van den BroecK4] gives a closed-form solution, similar to This case is much more like the original case of dispersion
Eq. (6) for particles that hop between two layers, each mov-through a capillary1], and, consequently, it is normal to find
ing with different overall velocities. In Eq5), F(t) derives K. /D~ P¢é.
this behavior from encountering random velocities in its flow  For a pack of beads, which are porous themsel®es0
history. These flow velocities, which are strongly correlateddue to isolation of some of the intrabead channels and not
over a pore, and produce the bump in the propagator at earfyst due to the immobile layers arising from the nonslip
times, eventually become random in moving from pore toboundary condition. Diffusion in and out of a bead is indis-
pore due to the geometrical randomness, which is intrinsic ipensable, and our picture prediéts = DP€, which was ob-

a porous medium. served experimentallj22].
An asymptotic regime is difficult to achieve even in well-
connected systems Wit_ho_ut_ dead end_s. Tessieal. [11] V. CONCLUSION
show that a Gaussian limit is not obtained for the range of . . . _
their data set. Scheven and Sdi6] have measured a non-  In conclusion, the dispersion propagaf(,t) in preas-

vanishing third moment to show clearly that at early stagesymptotic regime has featurgbumps that reflect local ge-
the distribution is not a Gaussian. Nevertheless, it is commopmetry of porous media. The mechanical mixing alone, in
practice to extract an “effective” dispersion coefficigit  plug flow (X=0), causes a transition from the ballistic re-
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gime to a stochastic one in a way that is strongly dependerdondition is small(i.e., Pe IiiPe type terms are small, as
on the geometry: the dispersion coeffici&it) approaches a noted by Maieret al.in bead pack$10]), we have two main
time-independent asymptotic valu€,. with characteristic =~ dependencies foK../D: if N—0 by diffusion, we expect
time constants that reflect fluctuations in local velocity ork_/p~pe or if N=0 by mechanical mixingtortuosity),
geometry. In absence of dead ends, only the effects due {ge expectK../D~ Pe. Different Pe and time dependencies

the nonslip boundary condition will make#0, but diffu- 5 ise from relative weights of diffusion versus mechanical
sion over small distances can heal the dead layers. Combin-

ing model simulation and generalizing the velocity correla-"X1NY that l.“” thess term. . . .
tion function formalism, we develop physically qualitative Let us reiterate that all flow considered here is creeping,
explanations of the different regimes of dispersion that havé!oW, steady Stokes flow at low Reynolds number. Disper-
been predicted and measured in different geometries. Assurilon induced by turbulencghat was studied by Taylor as
ing that the correction arising due to the nonslip boundangarly as 195325]) is outside the scope of this paper.
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